orthogonal stability of mixed type additive and cubic functional equations

نویسندگان

s. ostadbashi

j. kazemzadeh

چکیده

in this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of ratz.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal stability of mixed type additive and cubic functional equations

In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of Ratz.

متن کامل

Stability of a Mixed Type Additive, Quadratic and Cubic Functional Equation in Random Normed Spaces

In this paper, we obtain the general solution and the stability result for the following functional equation in random normed spaces (in the sense of Sherstnev) under arbitrary t-norms f(x + 3y) + f(x− 3y) = 9(f(x + y) + f(x− y))− 16f(x).

متن کامل

Stability of Mixed Type Cubic and Quartic Functional Equations in Random Normed Spaces

The stability problem of functional equations originated from a question of Ulam 1 in 1940, concerning the stability of group homomorphisms. Let G1, · be a group and let G2, ∗, d be a metric group with the metric d ·, · . Given > 0, does there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality d h x · y , h x ∗ h y < δ for all x, y ∈ G1, then there exists a homomorphism ...

متن کامل

Fuzzy Stability of Additive–quadratic Functional Equations

In this paper we investigate the generalized HyersUlam stability of the functional equation f(2x + y) + f(2x − y) = f(x + y) + f(x − y) + 2f(2x)− 2f(x) in fuzzy Banach spaces.

متن کامل

Generalized Orthogonal Stability of Some Functional Equations

We deal with a conditional functional inequality x ⊥ y ⇒ ‖ f (x + y)− f (x)− f (y) ‖ ≤ (‖ x‖ + ‖ y‖ ), where ⊥ is a given orthogonality relation, is a given nonnegative number, and p is a given real number. Under suitable assumptions, we prove that any solution f of the above inequality has to be uniformly close to an orthogonally additive mapping g, that is, satisfying the condition x ⊥ y ⇒ g(...

متن کامل

On the Stability of a General Mixed Additive-Cubic Functional Equation in Random Normed Spaces

1 Department of Mathematics, School of Science, Beijing Institute of Technology, Beijing 100081, China 2 Pedagogical Department E.E., Section of Mathematics and Informatics, National and Kapodistrian University of Athens, 4, Agamemnonos Str., Aghia Paraskevi, 15342 Athens, Greece 3 School of Communication and Information Engineering, University of Electronic Science and Technology of China, Che...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of nonlinear analysis and applications

ناشر: semnan university

ISSN

دوره 6

شماره 1 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023